Enji Technologies

templates

chevron-arrow

request templates

chevron-arrow

Docs

chevron-arrow

Feedback Board

chevron-arrow

log in to Enji-io

chevron-arrow
BurgerMenu

OUR TEMPLATES

LinkedIn

line

Calculators

line

Support

line

Privacy Policy

line

Compliance & Security

line

ENJI TECHNOLOGIES 2026

chevron-arrow

Back

Unequal Tapered I Beam

Open in Enji.io

chevron-arrow

The unequal-tapered I-beam combines the characteristics of varying depth (tapered) and dissimilar flanges (unequal). This highly specialised section is engineered for complex loading scenarios where both stress distribution along the member's length and stress asymmetry across the section need to be addressed efficiently. Such beams are found in custom-designed structures like complex bridge elements or specialised industrial equipment requiring maximal material optimisation.

Note: To use these calculations, open the page on your desktop to access the app link.

Scroll to see all calcs!
scroll right
Calculations
Description
Symbol Name
Value
Unit
Comment
0
Unequal Tapered I-beam
1
figure wim593c6f9347
2
Geometry Input
3
Section depth
dt
100.00
mm
4
Web thickness
tw
5.00
mm
5
Width of top flange
bf,top
50.00
mm
6
Outer top flange thickness
sf,top
10.00
mm
7
Inner top flange thickness
nt,top
15.00
mm
8
Width of bot flange
bf,bot
30.00
mm
9
Outer bot flange thickness
sf,bot
5.00
mm
10
Inner bot flange thickness
nt,bot
10.00
mm
11
Calculated Geometry Parameters
12
Outer flange to flange depth
hcentral
85.00
mm
hcentral
=
dt-sf,bot-sf,top
=
100.00-5.00-10.00
13
Web depth
Lt
75.00
mm
Lt
=
dt-nt,bot-nt,top
=
100.00-10.00-15.00
14
Tapered top flange segment horizontal length
ah,top
22.50
mm
ah,top
=
0.5⋅(bf,top-tw)
=
0.5⋅(50.00-5.00)
15
Tapered bottom flange segment horizontal length
ah,bot
12.50
mm
ah,bot
=
0.5⋅(bf,bot-tw)
=
0.5⋅(30.00-5.00)
16
Tapered top flange segment vertical length
av,top
5.00
mm
av,top
=
nt,top-sf,top
=
15.00-10.00
17
Tapered bot flange segment vertical length
av,bot
5.00
mm
av,bot
=
nt,bot-sf,bot
=
10.00-5.00
18
Atop,flange
500.00
mm2
Atop,flange
=
bf,top⋅sf,top
=
50.00⋅10.00
19
Atop,trapz
137.50
mm2
Atop,trapz
=
0.5⋅(bf,top+tw)⋅av,top
=
0.5⋅(50.00+5.00)⋅5.00
20
Aweb
375.00
mm2
Aweb
=
tw⋅Lt
=
5.00⋅75.00
21
Abot,trapz
87.50
mm2
Abot,trapz
=
0.5⋅(bf,bot+tw)⋅av,bot
=
0.5⋅(30.00+5.00)⋅5.00
22
Abot,flange
150.00
mm2
Abot,flange
=
bf,bot⋅sf,bot
=
30.00⋅5.00
23
Total area of the section
At
1250.00
mm2
At
=
Abot,flange+Abot,trapz+Aweb+Atop,trapz+Atop,flange
=
150.00+87.50+375.00+137.50+500.00
24
Perimeter
Pt
333.02
mm
Pt
=
bf,bot+bf,top+2⋅(sf,bot+sf,top+Lt+av,bot2+ah,bot2+av,top2+ah,top2)
=
30.00+50.00+2⋅(5.00+10.00+75.00+5.002+12.502+5.002+22.502)
25
Distance to centroid (x-axis)
Cx
25.00
mm
Cx
=
max(bf,bot,bf,top)2
=
max(30.00,50.00)2
26
ytop,flange
95.00
mm
ytop,flange
=
dt-0.5⋅sf,top
=
100.00-0.5⋅10.00
27
ytop,trapz
88.18
mm
ytop,trapz
=
dt-sf,top-av,top3⋅((2⋅tw+bf,top)(tw+bf,top))
=
100.00-10.00-5.003⋅((2⋅5.00+50.00)(5.00+50.00))
28
yweb
47.50
mm
yweb
=
dt-nt,top-0.5⋅Lt
=
100.00-15.00-0.5⋅75.00
29
ybot,trapz
6.90
mm
ybot,trapz
=
sf,bot+av,bot⋅(2⋅tw+bf,bot)(tw+bf,bot)⋅(13)
=
5.00+5.00⋅(2⋅5.00+30.00)(5.00+30.00)⋅(13)
30
ybot,flange
2.50
mm
ybot,flange
=
0.5⋅sf,bot
=
0.5⋅5.00
31
Distance to centroid (y-axis) from the bottom of the section
Cy
62.73
mm
Cy
=
(Abot,flange⋅ybot,flange+Abot,trapz⋅ybot,trapz+Aweb⋅yweb+Atop,trapz⋅ytop,trapz+Atop,flange⋅ytop,flange)At
=
(150.00⋅2.50+87.50⋅6.90+375.00⋅47.50+137.50⋅88.18+500.00⋅95.00)1250.00
32
Second moment of area around XX axis
33
Second moment of area about x axis for the top flange
Ixx,top,flange
524736
mm4
Ixx,top,flange
=
Atop,flange⋅sf,top212+Atop,flange⋅(ytop,flange-Cy)2
=
500.00⋅10.00212+500.00⋅(95.00-62.73)2
34
Second moment of area about the x-axis for the top tapered sections
Ixx,top,trapz
89271.0
mm4
Ixx,top,trapz
=
av,top3⋅(tw2+4⋅tw⋅bf,top+bf,top2)(36⋅(tw+bf,top))+Atop,trapz⋅(ytop,trapz-Cy)2
=
5.003⋅(5.002+4⋅5.00⋅50.00+50.002)(36⋅(5.00+50.00))+137.50⋅(88.18-62.73)2
35
Second moment of area about x axis for the web
Ixx,web
170069
mm4
Ixx,web
=
Aweb⋅Lt212+Aweb⋅(yweb-Cy)
=
375.00⋅75.00212+375.00⋅(47.50-62.73)
36
Second moment of area about the x-axis for the bottom tapered sections
Ixx,bot,trapz
272874
mm4
Ixx,bot,trapz
=
av,bot3⋅(tw2+4⋅tw⋅bf,bot+bf,bot2)(36⋅(tw+bf,bot))+Abot,trapz⋅(ybot,trapz-Cy)2
=
5.003⋅(5.002+4⋅5.00⋅30.00+30.002)(36⋅(5.00+30.00))+87.50⋅(6.90-62.73)2
37
Second moment of area about x-axis for the bot flange
Ixx,bot,flange
544521
mm4
Ixx,bot,flange
=
Abot,flange⋅sf,bot212+Abot,flange⋅(ybot,flange-Cy)2
=
150.00⋅5.00212+150.00⋅(2.50-62.73)2
38
Second moment of area about x-axis
Ixx
(1.601e+6)
mm4
Ixx
=
Ixx,top,flange+Ixx,bot,flange+Ixx,web+Ixx,top,trapz+Ixx,bot,trapz
=
524736+544521+170069+89271.0+272874
39
Second moment of area about the x1-axis
Ixx,1
(6.521e+6)
mm4
Ixx,1
=
Ixx+At⋅Cy2
=
(1.601e+6)+1250.00⋅62.732
40
Second moment of area around YY axis
41
Second moment of area about the y-axis for the major flange
Iyy,top,flange
104167
mm4
Iyy,top,flange
=
112⋅sf,top⋅bf,top3
=
112⋅10.00⋅50.003
42
Second moment of area about the y-axis for the minor flange
Iyy,bot,flange
11250.0
mm4
Iyy,bot,flange
=
112⋅sf,bot⋅bf,bot3
=
112⋅5.00⋅30.003
43
Second moment if area about the y-axis for the web
Iyy,web
781.25
mm4
Iyy,web
=
112⋅Lt⋅tw3
=
112⋅75.00⋅5.003
44
Second moment of area about the y-axis for the top tapered section
Iyy,top,trapz
7207.03
mm4
Iyy,top,trapz
=
136⋅(nt,top-sf,top)⋅ah,top3+(ah,top⋅(nt,top-sf,top))2⋅(tw2+ah,top3)2
=
136⋅(15.00-10.00)⋅22.503+(22.50⋅(15.00-10.00))2⋅(5.002+22.503)2
45
Second moment of area about the y-axis for the bottom tapered section
Iyy,bot,trapz
1660.16
mm4
Iyy,bot,trapz
=
136⋅(nt,bot-sf,bot)⋅ah,bot3+(ah,bot⋅(nt,bot-sf,bot))2⋅(tw2+ah,bot3)2
=
136⋅(10.00-5.00)⋅12.503+(12.50⋅(10.00-5.00))2⋅(5.002+12.503)2
46
Second moment of area about y-axis
Iyy
125065
mm4
Iyy
=
Iyy,top,flange+Iyy,bot,flange+Iyy,web+Iyy,top,trapz+Iyy,bot,trapz
=
104167+11250.0+781.25+7207.03+1660.16
47
Second moment of area about the y1-axis
Iyy,1
906315
mm4
Iyy,1
=
Iyy+At⋅Cx2
=
125065+1250.00⋅25.002
48
Other properties
49
Polar second moment of area about the z-axis
Jz
(1.727e+6)
mm4
Jz
=
Ixx+Iyy
=
(1.601e+6)+125065
50
Polar second moment of area about the z1-axis
Jz1
(7.427e+6)
mm4
Jz1
=
Ixx,1+Iyy,1
=
(6.521e+6)+906315
51
Radius of gyration about x-axis
Kx
35.79
mm
Kx
=
IxxAt
=
(1.601e+6)1250.00
52
Radius of gyration about y-axis
Ky
10.00
mm
Ky
=
IyyAt
=
1250651250.00
53
Radius of gyration about the z-axis
Kz
37.16
mm
Kz
=
Kx2+Ky2
=
35.792+10.002
54
Radius of gyration about the x1-axis
Kx1
72.23
mm
Kx1
=
Ixx,1At
=
(6.521e+6)1250.00
55
Radius of gyration about the y1-axis
Ky1
26.93
mm
Ky1
=
Iyy,1At
=
9063151250.00
56
Radius of gyration about the z1-axis
Kz1
77.08
mm
Kz1
=
Kx12+Ky12
=
72.232+26.932
57
Elastic section modulus about x-axis
Sx
25528.2
mm3
Sx
=
IxxCy
=
(1.601e+6)62.73
58
Elastic section modulus about y-axis
Sy
5002.60
mm3
Sy
=
IyyCx
=
12506525.00
59
Plastic modulus about X axis
60
Half of section area
Ahalf
625.00
mm2
Ahalf
=
At2
=
1250.002
61
Lower section boundary
Y0
0
mm
62
Lower trapezoid-flange boundary
Y1
5.00
mm
Y1
=
sf,bot
=
5.00
63
Lower trapezoid-web boundary
Y2
10.00
mm
Y2
=
nt,bot
=
10.00
64
Upper trapezoid-web boundary
Y3
85.00
mm
Y3
=
dt-nt,top
=
100.00-15.00
65
Upper trapezoid-flange boundary
Y4
90.00
mm
Y4
=
dt-sf,top
=
100.00-10.00
66
Upper section boundary
Y5
100.00
mm
Y5
=
dt
=
100.00
67
Area boundary bottom flange
AL1
150.00
mm2
AL1
=
Abot,flange
=
150.00
68
Area boundary bottom trapezoid
AL2
237.50
mm2
AL2
=
AL1+Abot,trapz
=
150.00+87.50
69
Area boundary web
AL3
612.50
mm2
AL3
=
AL2+Aweb
=
237.50+375.00
70
Area boundary top trapezoid
AL4
750.00
mm2
AL4
=
AL3+Atop,trapz
=
612.50+137.50
71
Area boundary top flange
AL5
1250.00
mm2
AL5
=
AL4+Atop,flange
=
750.00+500.00
72
Bottom trapezoid gradient
kbot
-5.00
rad
kbot
=
(tw-bf,bot)av,bot
=
(5.00-30.00)5.00
73
Top trapezoid gradient
ktop
9.00
ktop
=
(bf,top-tw)av,top
=
(50.00-5.00)5.00
74
Bottom quadratic discriminant
Δbot
-3850.00
mm2
Δbot
=
bf,bot2+2⋅kbot⋅(Ahalf-AL1)
=
30.002+2⋅-5.00⋅(625.00-150.00)
75
Top quadratic discriminant
Δtop
250.00
mm2
Δtop
=
tw2+2⋅ktop⋅(Ahalf-AL3)
=
5.002+2⋅9.00⋅(625.00-612.50)
76
Candidate for bottom flange
ytry,bot,flange
20.83
mm
ytry,bot,flange
=
Ahalfbf,bot
=
625.0030.00
77
Candidate for bottom trapezoid
ytry,bot,trapz
-1.00
mm
ytry,bot,trapz
=
{Y1+(-bf,bot+Δbot)kbotif Δbot≥0-1otherwise.
=
{5.00+(-30.00+-3850.00)-5.00if -3850.00≥0-1otherwise.
78
Candidate for web
ytry,web
87.50
mm
ytry,web
=
Y2+(Ahalf-AL2)tw
=
10.00+(625.00-237.50)5.00
79
Candidate for top trapezoid
Ytry,top,trapz
86.20
mm
Ytry,top,trapz
=
{Y3+(-tw+Δtop)ktopif Δtop≥0-1otherwise.
=
{85.00+(-5.00+250.00)9.00if 250.00≥0-1otherwise.
80
Candidate for top flange
ytry,top,flange
87.50
mm
ytry,top,flange
=
Y4+(Ahalf-AL4)bf,top
=
90.00+(625.00-750.00)50.00
81
Plastic neutral axis location
yp
86.20
mm
yp
=
{ytry,bot,flangeif Ahalf≤AL1{ytry,bot,trapzif Ahalf≤AL2{ytry,webif Ahalf≤AL3{Ytry,top,trapzif Ahalf≤AL4ytry,top,flangeotherwise.otherwise.otherwise.otherwise.
=
{20.83if 625.00≤150.00{-1.00if 625.00≤237.50{87.50if 625.00≤612.50{86.20if 625.00≤750.0087.50otherwise.otherwise.otherwise.otherwise.
82
Bottom flange term
Zbot,flange
12555.2
mm3
Zbot,flange
=
{bf,bot2⋅(yp2+(sf,bot-yp)2)if yp<sf,botAbot,flange⋅(yp-sf,bot2)otherwise.
=
{30.002⋅(86.202+(5.00-86.20)2)if 86.20<5.00150.00⋅(86.20-5.002)otherwise.
83
The width at the PNA level when inside the bottom trapezoid
wpna,bot,trapz
1348.73
mm
wpna,bot,trapz
=
bf,bot+(yp-sf,bot)⋅((yp-sf,bot)av,bot)
=
30.00+(86.20-5.00)⋅((86.20-5.00)5.00)
84
Area bottom wedge
Abw,bot,trapz
55977.3
Abw,bot,trapz
=
(bf,bot+wpna,bot,trapz)2⋅(yp-sf,bot)
=
(30.00+1348.73)2⋅(86.20-5.00)
85
Lever arm bottom wedge
ybw,bot,trapz
27.66
mm
ybw,bot,trapz
=
(yp-sf,bot)3⋅((wpna,bot,trapz+2⋅bf,bot)(wpna,bot,trapz+bf,bot))
=
(86.20-5.00)3⋅((1348.73+2⋅30.00)(1348.73+30.00))
86
Bottom wedge term
Zbw,bot,trapz
(1.548e+6)
mm3
Zbw,bot,trapz
=
Abw,bot,trapz⋅ybw,bot,trapz
=
55977.3⋅27.66
87
Area top wedge
Atw,bot,trapz
-51577.9
mm2
Atw,bot,trapz
=
(wpna,bot,trapz+tw)2⋅(nt,bot-yp)
=
(1348.73+5.00)2⋅(10.00-86.20)
88
Lever arm top wedge
ytw,bot,trapz
-25.49
mm
ytw,bot,trapz
=
(nt,bot-yp)3⋅((wpna,bot,trapz+2⋅tw)(wpna,bot,trapz+tw))
=
(10.00-86.20)3⋅((1348.73+2⋅5.00)(1348.73+5.00))
89
Top wedge term
Ztw,bot,trapz
(1.315e+6)
mm3
Ztw,bot,trapz
=
Atw,bot,trapz⋅ytw,bot,trapz
=
-51577.9⋅-25.49
90
Bottom trapezoid term
Zbot,trapz
6938.44
mm3
Zbot,trapz
=
{Abot,trapz⋅(yp-ybot,trapz)if yp>nt,bot{Abot,trapz⋅(ybot,trapz-yp)if yp<sf,botZbw,bot,trapz+Ztw,bot,trapzotherwise.otherwise.
=
{87.50⋅(86.20-6.90)if 86.20>10.00{87.50⋅(6.90-86.20)if 86.20<5.00(1.548e+6)+(1.315e+6)otherwise.otherwise.
91
Web term
Zweb
14513.0
mm3
Zweb
=
{Aweb⋅(yp-yweb)if yp>dt-nt,top{Aweb⋅(yweb-yp)if yp<nt,bottw2⋅((yp-nt,bot)2+((dt-nt,top)-yp)2)otherwise.otherwise.
=
{375.00⋅(86.20-47.50)if 86.20>100.00-15.00{375.00⋅(47.50-86.20)if 86.20<10.005.002⋅((86.20-10.00)2+((100.00-15.00)-86.20)2)otherwise.otherwise.
92
The width at the PNA level when inside the top trapezoid
wpna,top,trapz
15.81
mm
wpna,top,trapz
=
tw+(bf,top-tw)⋅((yp-(dt-nt,top))av,top)
=
5.00+(50.00-5.00)⋅((86.20-(100.00-15.00))5.00)
93
Area bottom wedge
Abw,top,trapz
12.50
mm2
Abw,top,trapz
=
(tw+wpna,top,trapz)2⋅(yp-(dt-nt,top))
=
(5.00+15.81)2⋅(86.20-(100.00-15.00))
94
Lever arm bottom wedge
ybw,top,trapz
0.49662
mm
ybw,top,trapz
=
(yp-(dt-nt,top))3⋅((wpna,top,trapz+2⋅tw)(wpna,top,trapz+tw))
=
(86.20-(100.00-15.00))3⋅((15.81+2⋅5.00)(15.81+5.00))
95
Bottom wedge term
Zbw,top,trapz
6.21
mm3
Zbw,top,trapz
=
Abw,top,trapz⋅ybw,top,trapz
=
12.50⋅0.49662
96
Area top wedge
Atw,top,trapz
125.00
mm2
Atw,top,trapz
=
(wpna,top,trapz+bf,top)2⋅((dt-sf,top)-yp)
=
(15.81+50.00)2⋅((100.00-10.00)-86.20)
97
Lever arm top wedge
ytw,top,trapz
2.23
mm
ytw,top,trapz
=
((dt-sf,top)-yp)3⋅((wpna,top,trapz+2⋅bf,top)(wpna,top,trapz+bf,top))
=
((100.00-10.00)-86.20)3⋅((15.81+2⋅50.00)(15.81+50.00))
98
Top wedge term
Ztw,top,trapz
278.53
mm3
Ztw,top,trapz
=
Atw,top,trapz⋅ytw,top,trapz
=
125.00⋅2.23
99
Top trapezoid term
Ztop,trapz
284.74
mm3
Ztop,trapz
=
{Atop,trapz⋅(yp-ytop,trapz)if yp>dt-sf,top{Atop,trapz⋅(ytop,trapz-yp)if yp<dt-nt,topZbw,top,trapz+Ztw,top,trapzotherwise.otherwise.
=
{137.50⋅(86.20-88.18)if 86.20>100.00-10.00{137.50⋅(88.18-86.20)if 86.20<100.00-15.006.21+278.53otherwise.otherwise.
100
Top flange term
Ztop,flange
4399.37
mm3
Ztop,flange
=
{Atop,flange⋅(ytop,flange-yp)if yp<dt-sf,topbf,top2⋅((dt-yp)2+(sf,top-(dt-yp))2)otherwise.
=
{500.00⋅(95.00-86.20)if 86.20<100.00-10.0050.002⋅((100.00-86.20)2+(10.00-(100.00-86.20))2)otherwise.
101
Plastic section modulus about x-axis
Zx
38690.7
mm3
Zx
=
Zbot,flange+Zbot,trapz+Zweb+Ztop,trapz+Ztop,flange
=
12555.2+6938.44+14513.0+284.74+4399.37
102
Plastic modulus about Y axis
103
Flanges contribution term
Zflanges
7375.00
mm3
Zflanges
=
(sf,top⋅bf,top2)4+(sf,bot⋅bf,bot2)4
=
(10.00⋅50.002)4+(5.00⋅30.002)4
104
Central web term
Zweb
531.25
mm3
Zweb
=
(hcentral⋅tw2)4
=
(85.00⋅5.002)4
105
Top wings term
Zwings,top
1125.00
mm3
Zwings,top
=
2⋅(0.5⋅av,top⋅ah,top)⋅(tw2+ah,top3)
=
2⋅(0.5⋅5.00⋅22.50)⋅(5.002+22.503)
106
Bottom wings term
Zwings,bot
416.67
mm3
Zwings,bot
=
2⋅(0.5⋅ah,bot⋅av,bot)⋅(tw2+ah,bot3)
=
2⋅(0.5⋅12.50⋅5.00)⋅(5.002+12.503)
107
Plastic section mosulus about y-axis
Zy
9447.92
mm3
Zy
=
Zflanges+Zweb+Zwings,top+Zwings,bot
=
7375.00+531.25+1125.00+416.67