Enji Technologies

templates

chevron-arrow

request templates

chevron-arrow

Docs

chevron-arrow

Feedback Board

chevron-arrow

log in to Enji-io

chevron-arrow
BurgerMenu

OUR TEMPLATES

LinkedIn

line

Calculators

line

Support

line

Privacy Policy

line

Compliance & Security

line

ENJI TECHNOLOGIES 2026

chevron-arrow

Back

Tapered I Beam

Open in Enji.io

chevron-arrow

The tapered I-beam is an I-section where the depth of the web, and sometimes the width of the flanges, varies along its length. This design optimises material usage by providing greater depth and strength in regions of high bending moment or shear, and less material where stresses are lower. Common applications include crane girders, portal frames, and cantilever beams, allowing for efficient and economical structural solutions.

Note: To use these calculations, open the page on your desktop to access the app link.

Scroll to see all calcs!
scroll right
Calculations
Description
Symbol Name
Value
Unit
Comment
0
Tapered I-beam
1
figure wim5416072d93
2
Section depth
dt
100.00
mm
3
Section breadth
bt
50.00
mm
4
Outer flange thickness
st
10.00
mm
5
Inner flange thickness
nt
20.00
mm
6
Web thickness
tw
20.00
mm
7
Web depth
Lt
60.00
mm
Lt
=
dt-2⋅nt
=
100.00-2⋅20.00
8
Tapered flange segment
atrapz
15.00
mm
atrapz
=
(bt-tw)2
=
(50.00-20.00)2
9
htrapz
10.00
mm
htrapz
=
nt-st
=
20.00-10.00
10
Aflange,rect
500.00
Aflange,rect
=
bt⋅st
=
50.00⋅10.00
11
Atrapz
350.00
mm2
Atrapz
=
(tw+bt)2⋅htrapz
=
(20.00+50.00)2⋅10.00
12
Aweb
1200.00
mm2
Aweb
=
Lt⋅tw
=
60.00⋅20.00
13
Total area
At
2900.00
mm2
At
=
2⋅Aflange,rect+2⋅Atrapz+Aweb
=
2⋅500.00+2⋅350.00+1200.00
14
Perimeter
Pt
332.11
mm
Pt
=
2⋅bt+2⋅Lt+4⋅st+4⋅atrapz2+htrapz2
=
2⋅50.00+2⋅60.00+4⋅10.00+4⋅15.002+10.002
15
Slope of tapered segment
gt
0.66667
−
gt
=
htrapzatrapz
=
10.0015.00
16
αdegrees
38.20
αdegrees
=
deg(gt)
=
deg(0.66667)
17
Distance to centroid (x-axis)
Cx
25.00
mm
Cx
=
bt2
=
50.002
18
Distance to centroid (y-axis)
Cy
50.00
mm
Cy
=
dt2
=
100.002
19
Ilocal,trapz
2738.10
mm2
Ilocal,trapz
=
htrapz3⋅(tw2+4⋅tw⋅bt+bt2)(36⋅(tw+bt))
=
10.003⋅(20.002+4⋅20.00⋅50.00+50.002)(36⋅(20.00+50.00))
20
Distance from the bottom to the top trapezoid centroid
ytrapz,top
85.71
mm
ytrapz,top
=
dt-st-htrapz⋅(2⋅tw+bt)(3⋅(tw+bt))
=
100.00-10.00-10.00⋅(2⋅20.00+50.00)(3⋅(20.00+50.00))
21
Distance from the bottom to the bottom trapezoid centroid
ytrapz,bot
14.29
mm
ytrapz,bot
=
st+htrapz⋅(2⋅tw+bt)(3⋅(tw+bt))
=
10.00+10.00⋅(2⋅20.00+50.00)(3⋅(20.00+50.00))
22
Ixx,1
(2.393e+6)
mm4
Ixx,1
=
2⋅Aflange,rect⋅st212+2⋅Aflange,rect⋅(0.5⋅(dt-st))2+Aweb⋅Lt212
=
2⋅500.00⋅10.00212+2⋅500.00⋅(0.5⋅(100.00-10.00))2+1200.00⋅60.00212
23
Ixx,2
898333
mm4
Ixx,2
=
2⋅Ilocal,trapz+Atrapz⋅(ytrapz,top-Cy)2+Atrapz⋅(ytrapz,bot-Cy)2
=
2⋅2738.10+350.00⋅(85.71-50.00)2+350.00⋅(14.29-50.00)2
24
Total second moment of area about the x-axis
Ixx
(3.292e+6)
mm4
Ixx
=
Ixx,1+Ixx,2
=
(2.393e+6)+898333
25
Final second moment of area about the y-axis
Iyy
332917
mm4
The local trapezoid formula is only suitable for Isosceles Trapezoids
Iyy
=
2⋅Aflange,rect⋅bt212+2⋅htrapz⋅(tw+bt)⋅(tw2+bt2)48+Aweb⋅tw212
=
2⋅500.00⋅50.00212+2⋅10.00⋅(20.00+50.00)⋅(20.002+50.002)48+1200.00⋅20.00212
26
Polar moment of inertia about centre
Jz
(3.625e+6)
mm4
Jz
=
Ixx+Iyy
=
(3.292e+6)+332917
27
Second moment of area about the y1-axis
Iy1
(2.145e+6)
mm4
Iy1
=
Iyy+At⋅Cx2
=
332917+2900.00⋅25.002
28
Second moment of area about the x1-axis
Ix1
(1.054e+7)
mm4
Ix1
=
Ixx+At⋅Cy2
=
(3.292e+6)+2900.00⋅50.002
29
Polar moment of inertia about vertex
Jz1
(1.269e+7)
mm4
Jz1
=
Ix1+Iy1
=
(1.054e+7)+(2.145e+6)
30
Radius of gyration about x-axis
Kx
33.69
mm
Kx
=
IxxAt
=
(3.292e+6)2900.00
31
Radius of gyration about y-axis
Ky
10.71
mm
Ky
=
IyyAt
=
3329172900.00
32
Radius of gyration about z-axis
Kz
35.35
mm
Kz
=
Kx2+Ky2
=
33.692+10.712
33
Radius of gyration about x1-axis
Kx1
60.29
mm
Kx1
=
Ix1At
=
(1.054e+7)2900.00
34
Radius of gyration about y1-axis
Ky1
27.20
mm
Ky1
=
Iy1At
=
(2.145e+6)2900.00
35
Radius of gyration about z1-axis
Kz1
66.14
mm
Kz1
=
Kx12+Ky12
=
60.292+27.202
36
Elastic section modulus about x-axis
Sx
65833.3
mm3
Sx
=
IxxCy
=
(3.292e+6)50.00
37
Elastic section modulus about y-axis
Sy
13316.7
mm3
Sy
=
IyyCx
=
33291725.00
38
Distance between flange rectangles
hw,s
80.00
mm
hw,s
=
dt-2⋅st
=
100.00-2⋅10.00
39
Plastic section modulus about x-axis
Zx
88000.0
mm3
Zx
=
tw⋅dt24+atrapz⋅dt⋅(nt+st)-23⋅atrapz⋅(nt2+nt⋅st+st2)
=
20.00⋅100.0024+15.00⋅100.00⋅(20.00+10.00)-23⋅15.00⋅(20.002+20.00⋅10.00+10.002)
40
Zy
25000.0
Zy
=
dt⋅tw24+tw⋅atrapz⋅(nt+st)+23⋅atrapz2⋅(nt+2⋅st)
=
100.00⋅20.0024+20.00⋅15.00⋅(20.00+10.00)+23⋅15.002⋅(20.00+2⋅10.00)