Enji Technologies

templates

chevron-arrow

request templates

chevron-arrow

Docs

chevron-arrow

Feedback Board

chevron-arrow

log in to Enji-io

chevron-arrow
BurgerMenu

OUR TEMPLATES

LinkedIn

line

Calculators

line

Support

line

Privacy Policy

line

Compliance & Security

line

ENJI TECHNOLOGIES 2026

chevron-arrow

Back

I Beam

Open in Enji.io

chevron-arrow

I-sections consist of two parallel flanges connected by a central web, providing high efficiency in resisting bending about its strong axis and shear forces through the web. The flanges and web can be of different sizes, depending on the application and requirements for the strength and stiffness in the minor and major axis.

Note: To use these calculations, open the page on your desktop to access the app link.

Scroll to see all calcs!
scroll right
Calculations
Description
Symbol Name
Value
Unit
Comment
0
Squared I-beam
1
figure wim350e3728bc
2
Section depth
dt
100.00
mm
3
Section breadth
bt
50.00
mm
4
Flange thickness
st
10.00
mm
5
Web thickness
tt
10.00
mm
6
Web depth
ht
80.00
mm
ht
=
dt-2⋅st
=
100.00-2⋅10.00
7
Area
At
1800.00
mm2
At
=
bt⋅dt-ht⋅(bt-tt)
=
50.00⋅100.00-80.00⋅(50.00-10.00)
8
Perimeter
Pt
380.00
mm
Pt
=
2⋅(2⋅bt+dt-tt)
=
2⋅(2⋅50.00+100.00-10.00)
9
Distance to centroid (x-axis)
Cx
25.00
mm
Cx
=
bt2
=
50.002
10
Distance to centroid (y-axis)
Cy
50.00
mm
Cy
=
dt2
=
100.002
11
Second moment of area about x-axis
Ix
(2.460e+6)
mm4
Ix
=
(bt⋅dt3-ht3⋅(bt-tt))12
=
(50.00⋅100.003-80.003⋅(50.00-10.00))12
12
Second moment of area about y-axis
Iy
215000
mm4
Iy
=
(2⋅st⋅bt3+ht⋅tt3)12
=
(2⋅10.00⋅50.003+80.00⋅10.003)12
13
Polar moment of inertia about centre
Jz
(2.675e+6)
mm4
Jz
=
Ix+Iy
=
(2.460e+6)+215000
14
Second moment of area about x1-axis
Ix1
(6.960e+6)
mm4
Ix1
=
Ix+At⋅Cy2
=
(2.460e+6)+1800.00⋅50.002
15
Second moment of area about y1-axis
Iy1
(1.340e+6)
mm4
Iy1
=
Iy+At⋅Cx2
=
215000+1800.00⋅25.002
16
Polar moment of inertia about centre
Jz1
(8.300e+6)
mm4
Jz1
=
Ix1+Iy1
=
(6.960e+6)+(1.340e+6)
17
Radius of gyration about x-axis
Kx
36.97
mm
Kx
=
IxAt
=
(2.460e+6)1800.00
18
Radius of gyration about y-axis
Ky
10.93
mm
Ky
=
IyAt
=
2150001800.00
19
Radius of gyration about z-axis
Kz
38.55
mm
Kz
=
Kx2+Ky2
=
36.972+10.932
20
Radius of gyration about x1-axis
Kx1
62.18
mm
Kx1
=
Ix1At
=
(6.960e+6)1800.00
21
Radius of gyration about y1-axis
Ky1
27.28
mm
Ky1
=
Iy1At
=
(1.340e+6)1800.00
22
Radius of gyration about z1-axis
Kz1
67.91
mm
Kz1
=
Kx12+Ky12
=
62.182+27.282
23
Elastic section modulus about x-axis
Sx
49200.0
mm3
Sx
=
IxCy
=
(2.460e+6)50.00
24
Elastic section modulus about y-axis
Sy
8600.00
mm3
Sy
=
IyCx
=
21500025.00
25
Plastic section modulus around x-axis
Zx
61000.0
mm3
Zx
=
14⋅bt⋅dt2-14⋅(bt-tt)⋅ht2
=
14⋅50.00⋅100.002-14⋅(50.00-10.00)⋅80.002
26
Plastic section modulus around y-axis
Zy
14500.0
mm3
Zy
=
14⋅ht⋅tt2+12⋅st⋅bt2
=
14⋅80.00⋅10.002+12⋅10.00⋅50.002