Enji Technologies

templates

chevron-arrow

request templates

chevron-arrow

Docs

chevron-arrow

Feedback Board

chevron-arrow

log in to Enji-io

chevron-arrow
BurgerMenu

OUR TEMPLATES

LinkedIn

line

Calculators

line

Support

line

Privacy Policy

line

Compliance & Security

line

ENJI TECHNOLOGIES 2026

chevron-arrow

Back

Hollow Ellipse

Open in Enji.io

chevron-arrow

The hollow elliptical structural shape features an elliptical outer profile with a hollow interior. This closed section provides good torsional resistance and directional bending strength, similar to solid ellipses, but with improved material efficiency and a better strength-to-weight ratio. Its unique aesthetic qualities make it a choice for architecturally expressive columns, beams, and decorative structural elements where visual appeal is as important as performance.

Note: To use these calculations, open the page on your desktop to access the app link.

Scroll to see all calcs!
scroll right
Calculations
Description
Symbol Name
Value
Unit
Comment
0
Hollow Ellipse
1
figure wim242b1ef908
2
Outer minor axis
bout
5.00
mm
3
Inner minor axis
bin
2.00
mm
4
Outer major axis
aout
10.00
mm
5
Inner major axis
ain
4.00
mm
6
Area
At
32.99
mm2
At
=
π4⋅(aout⋅bout-ain⋅bin)
=
π4⋅(10.00⋅5.00-4.00⋅2.00)
7
Outer perimeter
Pt
24.22
mm
Pt
=
π⋅(3⋅(aout2+bout2)-(3⋅aout2+bout2)⋅(aout2+3⋅bout2))
=
π⋅(3⋅(10.002+5.002)-(3⋅10.002+5.002)⋅(10.002+3⋅5.002))
8
Inner perimeter
Pt,inner
9.69
mm
Pt,inner
=
π⋅(3⋅(ain2+bin2)-(3⋅ain2+bin2)⋅(ain2+3⋅bin2))
=
π⋅(3⋅(4.002+2.002)-(3⋅4.002+2.002)⋅(4.002+3⋅2.002))
9
Distance to centroid (x-axis)
Cx
5.00
mm
Cx
=
aout2
=
10.002
10
Distance to centroid (y-axis)
Cy
2.50
mm
Cy
=
bout2
=
5.002
11
Second moment of area about x-axis
Ix
59.79
mm4
Ix
=
π⋅(aout⋅bout3-ain⋅bin3)64
=
π⋅(10.00⋅5.003-4.00⋅2.003)64
12
Second moment of area about y-axis
Iy
239.15
mm4
Iy
=
π⋅(aout3⋅bout-ain3⋅bin)64
=
π⋅(10.003⋅5.00-4.003⋅2.00)64
13
Polar moment of inertia about centre
Jz
298.94
mm4
Jz
=
Ix+Iy
=
59.79+239.15
14
Second moment of area about x1-axis
Ix1
265.96
mm4
Ix1
=
Ix+At⋅Cy2
=
59.79+32.99⋅2.502
15
Second moment of area about y-axis
Iy1
1063.82
mm4
Iy1
=
Iy+At⋅Cx2
=
239.15+32.99⋅5.002
16
Polar moment of inertia about vertex
Jz1
1329.78
mm4
Jz1
=
Ix1+Iy1
=
265.96+1063.82
17
Radius of gyration about x-axis
Kx
1.35
mm
Kx
=
IxAt
=
59.7932.99
18
Radius of gyration about y-axis
Ky
2.69
mm
Ky
=
IyAt
=
239.1532.99
19
Radius of gyration about z-axis
Kz
3.01
mm
Kz
=
Kx2+Ky2
=
1.352+2.692
20
Radius of gyration about x1-axis
Kx1
2.84
mm
Kx1
=
Ix1At
=
265.9632.99
21
Radius of gyration about y1-axis
Ky1
5.68
mm
Ky1
=
Iy1At
=
1063.8232.99
22
Radius of gyration about z1-axis
Kz1
6.35
mm
Kz1
=
Kx12+Ky12
=
2.842+5.682
23
Elastic section modulus about x-axis
Sx
23.92
mm3
Sx
=
IxCy
=
59.792.50
24
Elastic section modulus about y-axis
Sy
47.83
mm3
Sy
=
IyCx
=
239.155.00
25
Plastic section modulus about x-axis
Zx
39.00
mm3
Zx
=
(aout⋅bout2-ain⋅bin2)6
=
(10.00⋅5.002-4.00⋅2.002)6
26
Plastic section modulus about y-axis
Zy
78.00
mm3
Zy
=
(bout⋅aout2-bin⋅ain2)6
=
(5.00⋅10.002-2.00⋅4.002)6